메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
배선갑 한창영 서대호 김성진 (연암공업대학) 배종민 (경상대학교) 강현석 (경상대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제13권 제10호
발행연도
2010.10
수록면
1,494 - 1,505 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
하나의 프레스로 여러 종류의 부품을 소량으로 생산하는 중ㆍ소형 공장에서는 부품 생산 과정에 발생하는 소리가 다양하게 나타난다. 이에 우리는 제품의 생산 순간의 소리를 인식하여 제품의 양ㆍ불량을 판별하는 시스템을 계층형 시간적 메모리(HTM : Hierarchical Temporal Memory) 기술을 이용하여 개발하였다. HTM 이론은 인간 두뇌의 신피질(neocortex)의 동작 원리를 컴퓨터에 접목시킨 이론이다. 이는 실세계에 대한 시공간적인 패턴을 계층적으로 기억하는 것으로 기존의 인식 기술보다 여러 경우에 인식률이 뛰어난 것으로 알려져 있다. 우리는 이 HTM 기술을 소리 인식에 적용하여 부품에 대한 양ㆍ불량 판별 시스템을 개발하였다. 개발 결과를 검증하기 위해 실제 공장에서 부품 생산 순간의 다양한 소리들을 녹음하고, 소리 HTM 네트워크를 구성한 후, 학습과 훈련을 반복하여 해당 부품의 불량여부를 판정하도록 하였다. 그 결과 잡음이 많은 생산 현장에서도 판정의 정확도가 높은 것을 확인하였다.

목차

요약
ABSTRACT
1. 서론
2. HTM을 이용한 소리 인식
3. 부품의 양ㆍ불량 판별 시스템의 구조
4. 시스템 구현
5. 기존 연구와의 비교
6. 결론 및 향후 과제
참고문헌

참고문헌 (1)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004433559