메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hyoungseop Kim (Kyushu Institute of Technology) Yoshifumi Katsumata (Kyushu Institute of Technology) Joo Kooi Tan (Kyushu Institute of Technology) Seiji Ishikawa (Kyushu Institute of Technology)
저널정보
대한전자공학회 ITC-CSCC :International Technical Conference on Circuits Systems, Computers and Communications ITC-CSCC : 2009
발행연도
2009.7
수록면
705 - 708 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we described an algorithm of automatic detection of GGO candidate region to develop a CAD system from lung CT images by use of statistical features which is obtained density and shape features. In this algorithm, first, image pre-processing techniques such as segmentation of lung areas, binarization technique are introduced. In the second step, statistical features based on density features which are obtained mean, standard deviation, skewness, and kurtosis. Also two shape features which are obtained spiral scanning filter, and Gabor filter are introduced. In our clustering step, GGO area can be detect by using artificial neural networks. The proposed technique applied to 31 lung CT image sets. From this database, classification rates of a true positive rate of 84.2%, false positive rate of 57% and number of false positive 1.07/slice under the receiver operating characteristic analysis were achieved. The aim of this study is segmentation of lungs region and detection of abnormal area for the GGO by using thoracic MDCT image sets. This study also tried to decrease the amount of false positive rates and increase the amount of true positive rates so that the accuracy of performance.

목차

Abstract
1. Introduction
2. Methods
3. Experiment and results
4. Discussion and conclusions
Acknowledgement
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-569-004021500