메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Takahiro MIYAJIMA (Kyushu Institute of Technology) Takumi TOKISA (Kyushu Institute of Technology) Shinya MAEDA (Kyushu Institute of Technology) Hyoungseop KIM (Kyushu Institute of Technology) Joo Kooi TAN (Kyushu Institute of Technology) Seiji ISHIKAWA (Kyushu Institute of Technology) Seiichi MURAKAMI (Kyushu Institute of Technology) Takatoshi AOKI (University of Occupational & Environmental Health)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2012
발행연도
2012.10
수록면
1,814 - 1,817 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, thorax MDCT images are used in visual screening for early detection of lung nodules. Radiologists can easily detect lung nodules on images, but it has enormous images and load of radiologist for visual screening. To reduce the load of radiologist and improve the detection accuracy, a CAD (Computer Aided Diagnosis) system is expected from medical fields. In the medical image processing fields, some related works are reported to develop the CAD system including temporal subtraction technique as helpful technical issues.
In this paper, we propose a classification of lung nodules on temporal subtraction image based on image processing technique. At first, the candidate regions including nodules are detected by the multiple threshold technique in terms of the pixel value on the temporal subtraction images. Then, we remove vessel regions on nodules by the most suitable threshold technique and watershed method. Also we remove the false positives which are caused by mis-registration using selective enhancement filter, rule-base method and artificial neural networks. In this paper, we illustrate some experimental result which applied our algorithm to 31 chest MDCT cases including lung nodules.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. EXPERIMENTAL RESULTS
4. DISCUSSION AND CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0