메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박승민 (중앙대학교) 박준형 (중앙대학교) 이영환 (중앙대학교) 고광은 (중앙대학교) 심귀보 (중앙대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제20권 제6호
발행연도
2010.12
수록면
884 - 889 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 음악을 장르로 분류하는 다양한 연구가 진행되고 있다. 하지만 이러한 분류는 전문가들 마다 분류하는 기준이 서로 상이하여 정확한 결과를 도출하기가 쉽지 않다. 또한 새로운 장르 출현 시, 새롭게 정의해야하는 번거로움이 발생한다. 따라서 음악을 장르로 구분하기 보다는 감정단어들로 분류, 검색하여야 한다. 본 논문에서는 사람이 느끼는 감정 중, 밝음과 어두움을 기준으로 음악을 분류하려고 한다. 음악이 내포하고 있는 특성들에 VCM(Variance Considered Machines)을 적용하여 음악의 명암 분류 시스템을 제안한다. 본 논문에서 이용한 음악적 특성은 3가지이다. 설문조사를 통해 명암이 정의된 기준 음악을 음의 높고 낮음의 분포, 음색의 가늘고 굵음과 비트의 빠르기를 이용하여 VCM에 먼저 학습을 시킨 후, 학습된 VCM을 통하여 분류 되지 않은 음악을 정의하여 설문조사를 통한 결과와 비교 분석 하였다. 음 추출은 Matlab을 이용하여 샘플링된 음악을 일정한 간격으로 나누어 FFT를 통해 주파수 분석을 한 후 평균값을 그 구간의 대표음이라 가정하고 추출된 음들의 높낮이를 수치화 하여 전체 분포를 파악하였다. 음색 부분에서는 음 추출에서 사용된 주파수 영역에서 전체 주파수 누적분포의 차이를 이용하여 수치화 하였다. 이 세 가지 특성을 VCM에 적용하여 실험 결과와 설문 조사 결과 비교하여 보니 약 95.4%의 확률로 음악의 명암이 분리된 것을 확인 하였다.

목차

요약
Abstract
1. 서론
2. 음악에서의 명암 분류 정의
3. 음악적 명암 특징 추출 기법 제안
4. 음악적 명암 분류 알고리즘
5. 실험 결과 및 분석
6. 결론 및 향후 연구
참고문헌
저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-028-003781714