메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권오욱 (한국전자통신연구원) 김영길 (한국전자통신연구원)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 컴퓨팅의 실제 및 레터 정보과학회논문지 : 컴퓨팅의 실제 및 레터 제16권 제10호
발행연도
2010.10
수록면
1,000 - 1,004 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
형태소 품사 태거는 언어처리 시스템의 전처리기로 많이 활용되고 있다. 형태소 품사 태거의 성능 향상은 언어처리 시스템의 전체 성능 향상에 크게 기여할 수 있다. 자동번역과 같이 복잡도가 높은 언어처리 시스템은 최근 특정 도메인에서 좋은 성능을 나타내는 시스템을 개발하고 자 한다. 본 논문에서는 기존 일반도메인에서 학습된 LHMM 이나 HMM 기반의 영어 형태소 품사 태거를 특정 도메인에 적응하여 높은 성능을 나타내는 방법을 제안한다. 제안하는 방법은 특정도메인에 대한 원시코퍼스를 이용하여 HMM이나 LHMM의 기학습된 전이확률과 출력확률을 도메인에 적합하게 반자동으로 변경하는 도메인 적응 방법이다. 특허도메인에 적응하는 실험을 통하여 단어단위 태깅 정확률 98.87%와 문장단위 태깅 정확률 78.5%의 성능을 보였으며, 도메인 적응하지 않은 형태소 태거보다 단어단위 태깅 정확률 2.24% 향상(ERR: 66.4%)과 문장단위 태깅 정확률 41.0% 향상(ERR: 65.6%)을 보였다.

목차

요약
Abstract
1. 서론
2. LHMM 기반한 영어 형태소 품사 태거
3. LHMM 기반 영어 태거의 도메인 적응 방법
4. 실험
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-569-003583983