메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박성철 (동국대학교) 김준태 (동국대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제15권 제4호
발행연도
2009.12
수록면
23 - 35 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
네트워크 침입 탐지는 데이터마이닝 기법을 활용하면서 지속적으로 발전하여 왔다. 데이터마이닝에 의한 침입 탐지 기법에는 클래스 레이블을 이용한 감독 학습과 클래스 레이블이 없는 비감독 학습 방법이 있다. 본 논문에서는 클래스 레이블이 없는 비감독 학습 방법인 LBG 클러스터링 알고리즘을 이용하여 네트워크 침입 탐지 정확도를 높이는 방법을 연구하였다. 임의의 초기 중심값들로 시작하여 유클리디언 거리 기반에 의해 클러스터링을 수행하는 K-means 방법은 잡음(noisy) 데이터와 이상치(outlier)에 대하여 취약하다는 단점이 있다. 비균일이진 분할에 의한 클러스터링 알고리즘은 초기값 없이 이진분할에 의해 클러스터링을 수행하며 수행 속도가 빠르다. 본 논문에서는 이 두 알고리즘의 장단점을 통합한 EM(Expectation Maximization) 기반의 LBG 알고리즘을 네트워크 침입 탐지에 적용하였으며, KDD 컵데이터셋을 대상으로 한 실험을 통하여 LBG 알고리즘을 이용함으로써 침입 탐지의 정확도를 높일 수 있음을 보였다.

목차

1. 서론
2. 관련 연구
3. LBG 알고리즘을 이용한 침입탐지
4. 실험 및 결과
5. 결론
참고문헌
Abstract
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-003-002469838