메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정보보호학회 정보보호학회지 정보보호학회지 제19권 제2호
발행연도
2009.4
수록면
16 - 25 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
네트워크 기술의 발달에 따른 서비스의 증가는 네트워크 트래픽과 함께 취약점도 증대하여 이를 악용하는 행위도 늘어나고 있다. 따라서 네트워크 침입탐지 시스템은 증가하는 트래픽의 양을 처리할 수 있어야 하며, 악의적인 행동을 효과적으로 탐지 할 수 있어야 한다. 증가하는 트래픽을 효과적으로 처리하고 탐지의 정확성을 높이기 위해 처리 데이터를 감소시키는 기술이 요구된다. 이러한 방법들은 크게 데이터 필터링, 척도 선택, 데이터 클러스터링의 영역으로 구분되며, 본 논문에서는 척도 선택의 방법으로 데이터 처리의 감소 및 효과적 침입탐지를 수행할 수 있음을 보이고자 한다. 실험 데이터는 KDDCUP 99 데이터 셋을 이용하였으며, 통계적 척도선택의 방법으로 분류율, 오탐율, 거리값, 규칙, 선택된 척도 등을 제시함으로써 침입 탐지 시 데이터 처리량이 감소하였고, 분류율은 증가, 오탐율은 감소하여 침입 탐지 정확성이 높아짐을 알 수 있었다. 또한 본 논문에서 제시한 방법이 다른 관련연구에서 제시한 선택 척도보다 높은 정확성을 보임으로 써 보다 유용함을 증명할 수 있었다.

목차

요약
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 확률 분포를 이용한 척도 선택
Ⅳ. 분류 실험 결과
Ⅴ. 결론
참고문헌
〈著者紹介〉

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-019497224