메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전기학회 International Journal of Control Automation and Systems International Journal of Control Automation and System Vol.4 No.5
발행연도
2006.10
수록면
529 - 538 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Separating a reentry vehicle into warhead and body is a conventional and efficient means of producing a huge decoy and increasing the kinetic energy of the warhead. This procedure causes the radar to track the body, whose radar cross section is larger, and ignore the warhead, which is the most important part of the reentry vehicle. However, the procedure is difficult to perform using standard tracking criteria. This study presents a novel tracking algorithm by integrating input estimation and modified probabilistic data association filter to solve this difficulty in a clear environment. The proposed algorithm with a new defined association probability in this filter provides a good tracking capability for the warhead ignoring the radar cross section. The simulation results indicate that the errors between the estimated and the warhead trajectories are reduced to a small interval in a short time. Therefore, the radar can produce a beam to illuminate to the right area and keep tracking the warhead all the way. In conclusion, this algorithm is worthy of further study and application.

목차

Abstract
1. INTRODUCTION
2. DYNAMIC EQUATIONS
3. EXTENDED KALMAN FILTER WITH INPUT ESTIMATION
4. THE MODIFIED PROBABILISTIC DATA ASSOCIATION FILTER
5. STMULATION ANALYSTS
6. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-560-001677710