메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-SP 電子工學會論文誌 SP編 第46卷 第5號
발행연도
2009.9
수록면
48 - 55 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
실내외 영상 분류에 대한 연구는 밝기나 에지 정보와 같이 하위 레벨(low-level) 정보의 단순 결합을 이용하여 수행되어 왔다. 그러나 기존의 하위 레벨 영상 정보만을 기반으로 하는 실내외 영상 분류 방법은 다양한 콘텐츠를 극복하는데 한계가 있기 때문에 상위 레벨(high-level) 영상 정보를 함께 이용하는 방법에 대한 연구가 많이 진행되어 왔다. 이러한 연구의 대부분은 영상 내 하늘이나 수풀과 같은 영역을 검출하기 위해 별도의 알고리즘을 수행하기 때문에 특징 벡터의 차원을 증가시키거나 수행 속도를 저하시키는 문제점이 있다. 따라서 본 논문에서는 이러한 문제점을 극복하기 위해 효율적인 실내외 영상 분류기법을 제안한다. 먼저 효과적인 특징 벡터를 생성하기 위해 영상을 5개의 하위 블록으로 나눈다. 각각의 블록에 대하여, 제안하는 에지ㆍ색상 방향 히스토그램(edge and color orientation histogram, ECOH) 기술자(descriptor)를 이용하여 해당 블록을 표현하고 모든 블록의 값을 연결하여 최종적으로 특징 벡터를 생성한다. 제안하는 알고리즘의 효율성과 강건함을 보이기 위해 1200개 이상의 다양한 실내외 영상을 사용하였으며, 학습을 통해 각 영역의 가중치를 결정하여 분류 성능을 향상 시켰다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안하는 알고리즘
Ⅲ. 실험
Ⅳ. 결론
참고문헌
저자소개

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018855180