메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
양동원 (Agency for Defense Development(ADD))
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제24권 제1호
발행연도
2020.3
수록면
97 - 105 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
열 영상은 온도에 따라 방출하는 에너지의 차이를 나타낸 영상이다. 주야간 사용이 가능하기 때문에 군사적인 용도로 많이 활용되고 있으나, 열 영상은 물체의 경계가 불명확하고 흐릿하게 표현되는 경우가 많으며 화염 등의 열기로 인해 경계부분이 변질되는 단점이 있다. 따라서, 열 영상을 이용하여 표적의 종류를 분류할 때 정확하게 분할된 경계선을 이용할 경우 효과적으로 분류 할 수 있지만, 물체의 경계가 잘못 추출되는 경우 분류의 정확도가 크게 감소한다. 본 논문에서는 이러한 단점을 극복하기 위해서 표적 영상의 분할 신뢰도에 따라 형태특징과 지역특징의 분류결과를 융합하는 계층적 분류기법을 제안하였으며, 연속 영상 기반으로 분류 결과를 갱신하는 기법을 새롭게 제안하여 차량 표적 분류 정확도를 개선하였다. 제안하는 방법은 실제 군용 표적 4종(전차, 장갑차, 상용차, 군용트럭)이 있는 다양한 자세의 열 영상 20,000장 이상을 이용하여 성능을 검증하였으며, 우수한 성능의 기존 방법 대비 정확도 개선에 효과가 있음을 확인하였다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-056-000545279