메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
대한설비공학회 대한설비공학회 학술발표대회논문집 대한설비공학회 2009년도 하계학술발표대회
발행연도
2009.6
수록면
940 - 945 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Energy planning for hybrid energy system is important to increase the flexibility in the urban community and national energy systems. Expected maximum loads, load profiles and yearly energy demands are important input parameters to plan for the technical and environmental optimal energy system for a planning area. The method for energy demand prediction has been based on artificial neural networks(ANN). The advantage of ANN with respect to the other method is their ability of modeling a multivariable problem given by the complex relationships between the variables. This method can produce 10% of errors hourly load profile from individual building to urban community. As the results of this paper, energy demand prediction system has been developed based on simulink.

목차

ABSTRACT
1. 연구의 배경 및 목적
2. 시스템 개발을 위한 예비적 고찰
3. 광역도시 건물ㆍ에너지사용용도 분류
4. 에너지수요예측 시스템 개발
5. 결론
후기
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-553-018543021