메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산업응용수학회 JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS Journal of the Korean Society for Industrial and Applied Mathematics Vol.13 No.1
발행연도
2009.3
수록면
21 - 29 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper treats the conditions for the existence and stability properties of stationary solutions of a predator-prey interaction with self and cross-diffusion. We show that at a certain critical value a diffusion driven instability occurs, i.e. the stationary solution stays stable with respect to the kinetic system (the system without diffusion) but becomes unstable with respect to the system with diffusion and that Turing instability takes place. We note that the cross-diffusion increase or decrease a Turing space ( the space which the emergence of spatial patterns is holding) compared to the Turing space with self-diffusion, i.e. the cross-diffusion response is an important factor that should not be ignored when pattern emerges.

목차

ABSTRACT
1. INTRODUCTION
2. THE MODEL WITHOUT DIFFUSION
3. TURING INSTABILITY
4. CONCLUSIONS
ACNOWLEDGEMENTS
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0