메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
SHABAN ALY (KING KHALID UNIVERSITY)
저널정보
한국산업응용수학회 JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS Journal of the Korean Society for Industrial and Applied Mathematics Vol.17 No.2
발행연도
2013.6
수록면
129 - 138 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A spatio-temporal models as systems of ODE which describe two-species Beddington - DeAngelis type predator-prey system living in a habitat of two identical patches linked by migration is investigated. It is assumed in the model that the per capita migration rate of each species is influenced not only by its own but also by the other one’s density, i.e. there is cross diffusion present. We show that a standard (self-diffusion) system may be either stable or unstable, a cross-diffusion response can stabilize an unstable standard system and destabilize a stable standard system. For the diffusively stable model, numerical studies show that at a critical value of the bifurcation parameter the system undergoes a Turing bifurcation and the cross migration response is an important factor that should not be ignored when pattern emerges.

목차

ABSTRACT
1. INTRODUCTION
2. THE MODEL
3. THE EFFECTS OF A SELF-DIFFUSION RESPONSE
4. THE EFFECTS OF A CROSS-DIFFUSION RESPONSE
5. CONCLUSIONS
REFERENCES

참고문헌 (10)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-400-002488281