메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
항목 기반의 순차 패턴 마이닝 기법들을 시공간 데이타에 적용하기 위해서는 시공간 속성 값에 대한 적절한 이산화가 필수적이다. 본 논문에서는 입력 데이타의 시공간적 상관 정보를 유지함과 동시에 데이타 수를 축소시킴으로써 마이닝 프로세스의 효율성을 높이는 이산화 기법을 제안한다. 제안된 기법은 선 단순화를 사용하여 궤적에 대한 근사치를 구함으로써 마이닝 단계에서 처리할 데이타 크기를 축소시킨다. 또한 단순화 된 궤적을 유사한 시공간적 특성을 가지는 논리적 그룹으로 군집화하여 데이타의 분포를 고려한 이산화를 수행한다. 실험을 통해 제안된 기법이 마이닝 프로세스의 효율성을 높일 뿐 아니라 보다 직관적이고 해석이 용이한 패턴을 도출하는 것을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 시공간 데이타의 이산화
4. 데이타 축소와 군집화 기반의 시공간 데이타 이산화 기법
5. 실험
6. 결론
참고문헌

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015755576