메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제18권 제6(A)호
발행연도
2008.12
수록면
139 - 149 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
조직이나 기관에서 수집한 개인정보를 통계 분석, 공공 의료 연구 등을 목적으로 배포할 때는 데이터에 포함된 개인의 민감한 정보가 노출되지 않도록 보호해야 한다. 한편, 배포되는 데이터는 가능한 정확한 통계 정보를 제공해야 한다. k-anonymity와 l-diversity 모델은 이러한 프라이버시 침해 문제 해결을 위해 제안되었다. 그러나 두 모델은 데이터에 삽입과 삭제가 발생하지 않는 정적인 데이터를 단 한번 배포하는 상황을 가정하기 때문에 삽입과 삭제가 발생하는 동적인 데이터에 그대로 적용할 수 없다. 동적인 데이터의 프라이버시 보호 문제를 해결하기 위해 최근 m-invariance 모델이 제안되었다. 그러나 m-invariant 일반화 기법은 일반화로 인해 통계 정보로써 데이터의 품질을 저하시킨다는 단점이 있고, 배포된 데이터 중 일부 개인의 민감한 속성이 노출되었을 경우에 그 영향이 다른 부분으로 전이된다. 본 논문에서는 일반화를 사용하지 않으면서 간단한 삽입과 삭제 연산을 지원하는 동적 데이터의 배포 기법을 제안한다. 제안 기법은 데이터의 품질을 높이면서 m-invariance와 동등한 수준의 프라이버시 보호 정도를 제공한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안 기법
Ⅳ. 결론
참고문헌
〈著者紹介〉

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0