메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
문양세 (강원대학교) 김혜숙 (강원대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 컴퓨팅의 실제 및 레터 정보과학회논문지 : 컴퓨팅의 실제 및 레터 제16권 제3호
발행연도
2010.3
수록면
356 - 360 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근, 개인 데이터의 프라이버시 보호에 대한 문제가 대두됨에 따라 대용량 데이터를 대상으로 하는 데이터 마이닝 분야에서도 프라이버시 보호 문제에 대한 활발한 연구가 진행되고 있다. 데이터 마이닝에서의 프라이버시 보호 문제는 정보제공자에 의해 제공된 정보 중 민감한 개인 정보의 노출이 없이도 가능한 정확한 마이닝 결과를 얻는 것이다. 데이터 마이닝의 프라이버시 보호 기법에서는 데이터의 보호뿐만 아니라 결과의 정확도 또한 중요한 요인이다. 이에 따라, 본 논문에서는 시계열 데이터 클러스터링을 기반으로 랜덤 데이터 교란 기법에서 결과의 정확도를 높이는 기법으로 노이즈 평준화 개념을 제시한다. 기존의 랜덤 데이터 교란 기법은 데이터의 프라이버시는 잘 보호하지만 시계열간의 거리-순서가 보존되지 않아 결과의 정확도가 크게 떨어지는 문제점을 가진다. 이를 위해, 본 논문에서는 PAA를 기반으로 하는 노이즈 평준화 개념을 제시하고, 구체적인 예를 통해, 제안한 노이즈 평준화 개념이 랜덤 데이터 교란 기법에서 클러스터링 결과의 정확도를 높일 수 있음을 체계적으로 설명한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 노이즈 평준화 효과
4. 결론
참고문헌

참고문헌 (1)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-002231253