메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국항공우주학회 한국항공우주학회지 韓國航空宇宙學會誌 第33卷 第2號
발행연도
2005.2
수록면
84 - 91 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
오랜기간 비행선의 이착륙은 사람에 의한 수동으로 이루어졌으나, 자동제어시스템의 개발 과 함께 이를 비행선에 적용하여 보다 정확한 이착륙의 필요성이 대두되었으며, 많은 알고리즘이 개발되고 있다. 본 논문에서는 기낭의 압력제어에 의한 비행선의 이착륙제어를 다룬다. 비행선의 운동방정식은 비선형 방정식으로 매우 복잡하여 우선 간단한 PID제어기에 의한 해법을 제시하였다. 그러나, 운항시 대기조건이 빠르게 변하므로 변하는 예측 불가능한 외란에 대해서는 만족스런 성능을 보이지 못하였다. 따라서, 본지에서는 인공 신경망을 이용한 학습 알고리즘을 토대로 원하는 궤적에 빠르게 추종하도록 설계하였다. 일반적으로 인공신경망은 복잡한 문제에 있어서 많은 수의 은닉층과 뉴런이 필요하고 또한 훈련시간이 많이 걸리는 단점이 있기에 이를 해결하기 위해 비행선 이착륙 문제에 대한 일반적인 인공신경망 적용에 대해 연구하였다. 본지에서는 RBFN(radial basis function network)제어기를 설계하였고, 신경 회로망의 가중치는 외란이 인가되거나 부하특성이 비선형적으로 변화되는 것을 고려하도록 기준입력과 실제 비행선 모델의 출력사이의 오차를 최소화하는 방향으로 학습을 진행하였다. 그 결과 최대 15m의 오차를 보이는 PID제어기보다 양호한 결과를 얻었다.

목차

ABSTRACT
초록
Ⅰ. 서론
Ⅱ. 운동방정식 및 이상궤적생성
Ⅲ. 신경망 제어 시스템 설계
Ⅳ. 시뮬레이션
Ⅴ. 결론
후기
참고문헌

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0