메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국독성학회 Toxicological Research Toxicological Research Vol.24 No.4
발행연도
2008.12
수록면
281 - 287 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Impairment of hepatic metabolism of sulfur-containing amino acids has been known to be linked with induction of liver injury. We determined the early changes in the transsulfuration reactions in liver of rats challenged with a toxic dose of CCl₄ (2 m㏖/㎏, ip). Both hepatic methionine concentration and methionine adenosyltransferase activity were increased, but S-adenosylmethionine level did not change. Hepatic cysteine was increased significantly from 4 h after CCl₄ treatment. Glutathione (GSH) concentration in liver was elevated in 4~8 h and then returned to normal in accordance with the changes in glutamate cysteine ligase activity. Cysteine dioxygenase activity and hypotaurine concentration were also elevated from 4 h after the treatment. However, plasma GSH concentration was increased progressively, reaching a level at least several fold greater than normal in 24 h. γ-Glutamyltransferase activity in kidney or liver was not altered by CCl₄, suggesting that the increase in plasma GSH could not be attributed to a failure of GSH cycling. The results indicate that acute liver injury induced by CCl₄ is accompanied with extensive alterations in the metabolomics of sulfurcontaining amino acids and related substances. The major metabolites and products of the transsulfuration pathway, including methionine, cysteine, hypotaurine, and GSH, are all increased in liver and plasma. The physiological significance of the change in the metabolomics of sulfur-containing substances and its role in the induction of liver injury need to be explored in future studies.

목차

INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
ACKNOWLEDGEMENTS
REFERENCES

참고문헌 (40)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0