메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
정확한 소프트웨어 공수 예측은 소프트웨어 관련 여러 커뮤니티들에서 예전부터 항상 이슈가 되어 왔다. 소프트웨어 공수 예측의 정확도를 향상시키기 위해 지금까지 많은 연구들에서는 데이타 품질이 공수 예측에 중요한 요소들 중 하나임에도 불구하고 이것에 대한 고려 없이 공수 예측 기법들에만 초점을 맞추어 왔다. 본 연구에서는 소프트웨어 공수 예측 기법과 이상치 제거 기법들 사이의 영향 관계를 공수예측 정확도의 관점에서 실험적으로 살펴본다. 두 개의 프로젝트 데이타들(ISBSG와 국내의 한 금융 조직으로부터 수집된 데이타)에 대해 일반적으로 많이 사용되는 세 가지 공수 예측 기법(최소제곱법, 신경망 네트워크, 그리고 베이지안 네트워크)과 두 가지 이상치 제거 기법(최소절사제곱법과 K-means 클러스터링)을 적용시켜 그 결과들을 서로 비교해 보고 이상치 제거 기법을 적용하지 않은 결과와도 비교해 본다.

목차

요약
Abstract
1. 서론
2. 배경 지식
3. 관련연구
4. 실험연구
5. 실험결과와 검토
6. 결론 및 향후 연구
참고문헌

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0