메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Focused crawling은 검색시스템의 구축을 위한 웹 문서 수집단계에서, 미리 정의된 토픽 집합들과 관련성을 가지는 웹 문서를 수집하기 위하여 제안되었다. 이러한 focused crawling 연구에서 보다 효과적인 웹 문서 수집을 위해 주어진 토픽에 대한 양질의 배경지식을 제공할 수 있도록 온톨로지가 활발히 활용되어왔다. 그러나 기존의 온톨로지 기반 focused crawling 연구는 토픽과 웹 문서 간의 관련성 측정을 위하여, 주어진 토픽과 관련있는 온톨로지 내 각 개념들에 직관에 의존한 가중치를 부여하여 활용하였다. 하지만 이러한 직관에 의존한 가중치부여 기법은 안정된 수집결과를 도출할 수 있는 최적화된 가중치 값을 얻기가 힘든 한계가 있다. 따라서 본 논문에서는 이러한 개념에 대한 가중치가 학습에 의하여 자동으로 결정되도록, 인공신경망을 적용한 온톨로지 기반 focused crawling 기법을 제안한다. 웹 상에서 제안된 시스템의 성능을 실험한 결과 기존의 온톨로지 기반 수집 기법에 비하여 보다 향상된 결과를 보임을 알 수 있었다.

목차

요약
1. 소개
2. 관련연구
3. 신경망을 적용한 온톨로지 기반 Focused crawling
4. 실험
5. 결론
참조문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0