메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-CI 電子工學會論文誌 CI編 第45卷 第5號
발행연도
2008.9
수록면
102 - 109 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 다중경로 페이딩 채널 조건에서 사전 정보없이 입사하는 디지털 신호 10종의 변조형태를 고정확도로 인식할 수 있도록 고차 통계량(HOS)과 웨이브릿 변환(WT)에서 선정된 특징(key features)을 이용한 견실한 하이브리드 분류기를 제안하였다. 제안된 분류기는 실제 시나리오를 고려하여 다양한 다중경로 환경(즉, 농촌, 소도시, 도심지역)에서 측정된 채널 데이터를 이용하였다. 실제 측정된 다중경로 페이딩 채널 데이터를 이용하여 Holdout-like 방식으로 총 15개 채널 중 9개 채널은 트레이닝용으로 사용하고, 나머지 6개 채널은 테스트용으로 사용하였다. 제안된 분류기는 다중경로 환경에서 높은 변별력을 유지하는 HOS 특징을 기반으로 구현되었고, AMA(Alphabet Matched Algorithm) 또는 MMA(Multi-modulus Algorithm)와 같은 등화기법의 적용없이 분류가 어렵다고 알려진 MQAM신호(M=16, 64, 256)들에 대해서만 WT 특징을 적용하였다. 선정된 특징들을 이용한 변조인식은 입력공간에서 최대 마진을 갖는 하이퍼 공간으로 매핑시킴으로서 분류 능력이 우수하다고 알려진 SVM 메소드를 적용하여 시뮬레이션을 실시하였다. 제안된 분류기의 성능은 트레이닝 채널과 테스트 채널에서 WT 또는 HOS 특징만을 단독으로 사용하는 분류기에 비해 현저한 성능 향상을 보였고, 특히, MQAM 신호의 인식률은 낮은 SNR레벨에서도 거의 완전하게 분류되었다.

목차

요약
Abstract
Ⅰ. Introduction
Ⅱ. HOS Key features for MC
Ⅲ. WT Key Features for MC
Ⅳ. Classification using SVM
Ⅴ. Numerical Simulation
Ⅵ. Conclusion
참고문헌
저자소개

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0