메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
사용자 의도 예측 기술은 음성인식기의 탐색 공간을 줄이기 위한 후처리 방법으로 사용될 수 있으며, 시스템 의도 예측 기술은 유연한 응답 생성을 위한 전처리 방법으로 사용될 수 있다. 이러한 실용적인 필요성에 따라 본 논문에서는 화행과 개념열의 쌍으로 일반화된 화자의 의도를 예측하는 통계 모델을 제안한다. 단순한 화행 n-그램 통계만을 이용한 기존의 모델과는 다르게 제안 모델은 현재 발화까지의 대화 이력을 다양한 언어 레벨의 자질 집합(화행과 개념열 쌍의 n-그램, 단서 단어, 영역 프레임의 상태 정보)으로 표현한다. 그리고 추출된 자질 집합을 CRFs(Conditional Random Fields)의 입력으로 사용하여 다음 발화의 의도를 예측한다. 일정 관리 영역에서 실험을 수행한 결과, 제안 모델은 사용자의 화행과 개념열 예측에서 각각 76.25%, 64.21%의 정확률을 보였다. 그리고 시스템의 화행과 개념열 예측에서 각각 88.11%, 87.19%의 정확률을 보였다. 또한 기존 모델과 비교하여 29.32% 높은 평균 정확률을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 통계적 의도 예측
4. 실험 및 평가
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0