메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 통계 기반 한국어 화행분류를 위하여 필요한 각 자질이 분류 성능에 미치는 영향과 성능 향상에 기여하는 자질 조합을 비교 평가한다. 지지벡터기계 학습 방법을 이용하여 구현한 화행 분류 시스템을 통해 실험한 결과, n-gram 자질 중 품사 바이그램은 유용하지 않으며 형태소-품사 쌍과 다른 자질들을 결합했을 때 성능이 향상됨을 알 수 있었다. 또한, 자질 선택 기법을 사용한 자질 비율에 따른 실험을 통해서 매우 적은 자질만으로도 화행 분류에 있어 어느 정도 안정된 성능을 낼 수 있었다. 아울러, 실험 결과의 분석을 통해 한국어에서 마지막 어절이 문장 전체의 화행분류에 중요한 역할을 하며, 한국어의 특징인 자유 어순이나 주어의 빈번한 생략 등이 화행 분류 실험의 성능에 영향을 미친다는 사실도 알 수 있었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 한국어 대화의 화행 분류를 위한 자질
4. 실험 및 평가
5. 결론
참고문헌

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0