메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제16권 제2호
발행연도
2006.4
수록면
164 - 171 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근에 서비스되기 시작한 디지털 멀티미디어 방송은 다양한 종류의 수많은 컨텐츠를 제공하기 때문에 고객은 때로 자신이 선호하는 컨텐츠를 찾는데 많은 시간을 소비한다. 심지어는 선호 컨텐츠를 찾는 동안 이미 방송이 끝날 수도 있다. 이와 같은 문제를 해결하기 위해서는 고객이 필요로 하는 최소 정보만을 추천하기 위한 방법이 필요하다. 본 논문에서는 고객이 시청한 컨텐츠 선호도 전이 확률을 이용하여 고객이 선호하는 컨텐츠를 미리 예측하여 추천하기 위한 알고리즘과 시스템을 제안한다. 제안하는 시스템은 클라이언트 관리자 에이전트, 모니터링 에이전트, 러닝 에이전트, 그리고 추천 에이전트 모듈로 구성된다. 클라이언트 관리자 에이전트는 다른 모듈과 상호 작용을 하면서 조정자 역할을 한다. 모니터링 에이전트는 컨텐츠에 대한 고객의 선호도를 분석하기 위해 고객이 이용했던 usage history 데이터를 수집하기 위한 에이전트이다. 러닝 에이전트는 고객으로부터 수집된 usage history 데이터를 정제하여 시간 변화에 따른 상태 전이 행렬로 모델링하기 위한 에이전트이다. 추천 에이전트는 고객의 상태 전이 행렬로 구성된 모델링 데이터에 본 논문에서 제안하는 선호도 전이 확률 모델을 이용하여 고객이 바로 다음에 선호하게 될 컨텐츠를 추천하기 위한 에이전트이다. 추천 에이전트 모듈에서 컨텐츠에 대한 고객의 선호도 전이 확률을 이용하는 추천 알고리즘을 제안한다. 제안하는 추천 시스템은 무선 인터넷 표준 플랫폼인 WIPI(Wireless Internet Platform for Interoperability) 플랫폼에서 프로토타입 시스템을 설계, 구현하였으며, 실험결과 제안된 선호도 전이 확률 모델의 추천 정확도가 전형적인 방법에 비해 효과적임을 보인다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 목표 시스템 구조
4. 시스템 구현 및 실험
5. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014968933