메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 시간에 따라 다양한 컨텐츠를 제공하는 방송 환경에서 고객의 최근 시청 정보를 이용하여 바로 다음에 고객이 시청하기를 선호하는 컨텐츠를 추천하기 위한 방법으로 가중치 적용 Markov 모델을 제안한다. 일반적으로 TV 시청자들은 최근에 시청한 자신이 선호하는 컨텐츠를 다시 시청하는 성향이 있다. 본 논문에서 제안하는 가중치 적용 Markov 모델은 TV 시청자들의 이와 같은 성향을 고려하여 고객이 연속적으로 시청한 정도에 따라 컨텐츠 선호도 전이 행렬에 가중치를 적용한다. 제안된 모델의 실험을 위해 고객으로부터 수집된 TV 시청 정보를 이용하여 고객의 선호 장르를 추천하는데 제안모델을 적용하였다. 실험 결과 제안된 방법이 기존 방법에 비해 추천의 정확도가 향상되었음을 보인다

목차

요약
Abstract
1. 서론
2. 관련 연구
3. Markov 모델
4. 가중치 적용 Markov 모델
5. 성능 평가
6. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017415922