메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
전략 게임은 여러 종류의 유닛(Unit)이 존재한다. 각각의 유닛은 특정 유닛에 대해 강한 면모를 보이기도 하고, 또 다른 종류의 유닛에게는 약한 면모를 가지고 있다. 이를 유닛간의 상성이라고 한다. 상성은 전략적 선택을 하는데 기반이 되고, 심리전을 유발하여 보다 게임에 몰입할 수 있게 해준다. 게임 인공지능이 상성을 고려하도록 하기 위해 각각의 유닛 간에 수치화된 상성 정보가 필요하다. 그리고 생성된 수치 자료를 토대로 유닛의 행동방법을 결정할 인공 지능도 필요하게 된다. 다음 행동 및 이동을 위해 주로 사용되는 방법은 영향력 분포도(influence map)이다. 영향력 분포도는 자신과 상대방의 세력을 수치적으로 파악하는 것이다. 하지만 일반적인 형태의 영향력 분포도로는 각 유닛간의 상성을 표현하기 힘들다. 따라서 본 논문에서는 영향력 분포도를 상성에 맞게 보정할 수 있는 방법을 제시하여 인공지능이 지능적인 행동을 하도록 돕는 방법을 제안한다. 이를 길 찾기 문제에 적용하여 전략적 이동경로를 선택하는 방법을 제시하였다.

목차

요약
1. 서론
2. 관련 연구
3. 상성점수 테이블과 영향력 분포도
4. 실험 및 결과
5. 결론 및 향후 연구방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014902973