메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Most previous studies on improving the effectiveness of CBR have focused on the similarity function aspect or optimization of case features and their weights. However, according to some of the prior research, finding the optimal k parameter for the k-nearest neighbor (k-NN) is also crucial for improving the performance of the CBR system. Nonetheless, there have been few attempts to optimize the number of neighbors, especially using artificial intelligence (AI) techniques. In this study, we introduce a genetic algorithm (GA) to optimize the number of neighbors that combine, as well as the weight of each feature. The new model is applied to the real-world case of a major telecommunication company in Korea in order to build the prediction model for the customer profitability level. Experimental results show that our GA-optimized CBR approach outperforms other AI techniques for this mulriclass classification problem.

목차

Abstract
1. Introduction
2. Simultaneous Optimization of Case-based Reasoning using Genetic Algorithm
3. Research Design
4. Experimental Results
5. Concluding Remarks
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014884967