메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능정보시스템학회 지능정보연구 한국지능정보시스템학회논문지 제11권 제2호
발행연도
2005.11
수록면
175 - 195 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
사례기반추론(case-based reasoning)은 사례간 유사도를 평가하여 유사한 이웃사례를 찾아내고, 이웃사례의 결과를 이용하여 새로운 사례에 대한 예측결과를 생성하는 전통적인 인공지능기법 중 하나다. 이러한 사례기반추론이 최근 적용이 쉽고 간단하다는 장점과 모형의 갱신이 실시간으로 이루어진다는 점 등으로 인해, 온라인 환경에서의 고객관계관리를 위한 도구로 학계와 실무에서 주목을 받고 있다. 하지만, 전통적인 사례기반추론의 경우, 타 인공지능기법에 비해 정확도가 상대적으로 크게 떨어진다는 점이 종종 문제점으로 제기되어 왔다.
이에, 본 연구에서는 사례기반추론의 성과를 획기적으로 개선하기 위한 방법으로 유전자 알고리즘을 활용한 사례기반추론의 동시 최적화 모형을 제안하고자 한다. 본 연구가 제안하는 모형에서는 기존 연구에서 사례기반추론의 성과에 중대한 영향을 미치는 요소들로 제시된 바 있는 사례 특징변수의 상대적 가중치 선정(feature weighting)과 참조사례 선정(instance selection)을 유전자 알고리즘을 이용해 최적화함으로서, 사례간 유사도를 보다 정밀하게 도출하는 동시에 추론의 결과를 왜곡할 수 있는 오류사례의 영향을 최소화하고자 하였다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 국내 한 전문 인터넷 쇼핑몰의 구매예측모형 구축사례에 제안모형을 적용하여 그 성과를 살펴보았다. 그 결과, 제안모형이 지금까지 기존 연구에서 제안된 다른 사례기반추론 개선모형들은 물론, 로지스틱 회귀분석(LOGIT), 다중판별분석(MDA), 인공신경망(ANN), SVM 등 다른 인공지능 기법들에 비해서도 상대적으로 우수한 성과를 도출할 수 있음을 확인할 수 있었다.

목차

국문초록

1. 서론

2. 문헌 연구

3. 연구 모형

4. 실험 설계

5. 실험 결과

6. 연구의 의의 및 한계점

참고문헌

Abstract

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-015411696