메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
의견(Opinion) 분석은 도전적인 분야로 언어 자원 구축, 문서의 Sentiment 분류, 문장 내의 의견 어구 추출 등의 다양한 문제를 다룬다. 이 중 의견 어구 추출문제는 단순히 문장이나 문서 단위로 분류하는 수준을 뛰어 넘는 문장 내 의견 어구를 추출하는 문제로 최근 많은 관심을 받고 있는 연구 주제이다. 그러나 의견 어구 추출에 대한 기존 연구는 문장 내 의견 어구 부분이 태깅(tagging)된 학습 데이터와 의견 어휘 자원을 이용한 지도(Supervised)학습을 이용한 접근이 대부분으로 실제 적용 상의 한계를 갖는다. 본 논문은 문장 내 의견 어구 부분이 태깅된 학습 데이터와 의견 어휘 자원이 없는 환경에서도 문장단위의 극성 정보를 이용하여 의견 어구를 추출하는 부분 지도(Semi-Supervised)학습 방법을 제안한다. 본 논문의 방법은 Baseline에 비하여 정확률(Precision)은 33%, F-Measure는 14% 가량 높은 성능을 냈다.

목차

요약
1. 서론
2. 접근 방법
3. 실험
4. 요약 및 결론
감사의 글
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014823413