메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 문서 내에서 동시에 출현하는 단어 쌍을 자질 추출 단위로 하는 문서 범주화 시스템에 대하여 기술한다. 자질 추출 단위를 단어 쌍으로 정의한 것은 문서에서 빈번하게 동시에 출현하는 단어들은 서로 연관관계가 높으며, 단어 하나보다는 연관관계가 높은 단어들의 쌍이 특정 범주의 문서에서만 나타날 확률이 높아지므로 문서 분류 능력을 높이는데 좋은 요인으로 작용할 수 있을 것이라는 가정 때문이다. 그리고 문서 요약 분야에서 제안된 Log-likelihood Ratio를 기반으로 하는 Topic Signature Term Extraction 방법을 사용하여 자질 추출을 하고, Naive Bayes 분류기를 이용하여 문서를 분류한다. 본 연구는 Reuters-21578 문서 집합을 이용한 성능평가에서 좋은 결과를 보였으며, 이는 앞으로의 연구에도 기여할 수 있을 것이라 기대한다.

목차

요약
1. 서론
2. 관련연구
3. 시스템
4. 실험
5. 결론 및 향후 과제
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014823408