메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제17권 제7호
발행연도
2007.12
수록면
881 - 886 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
퍼지 추론은 애매한 지식을 효과적으로 처리할 수 있는 장점이 있다. 그러나 퍼지규칙의 연관속성은 규칙을 과다하게 생성하기 때문에 유용하고 중요한 규칙을 결정하는데 여러 가지 문제점이 있다.
본 논문에서는 러프집합을 적용하여 규칙간의 상관성을 고려하여 불필요한 속성을 제거하고, 퍼지 상대농도를 이용하여 추론결과의 정확성을 유지하면서 규칙의 수를 최소화 하는 방법을 제안한다. 실험결과 규칙의 개수는 감소되었으며 추론결과가 감축하기 이전과 일치하고 규칙간의 중복성이 제거되는 것을 확인하였다.

목차

요약
Abstract
1. 서론
2. 러프집합과 퍼지추론
3. 러프집합과 퍼지 상대농도를 이용한 퍼지규칙의 감축
4. 실험 및 결과
5. 결론
참고문헌
저자소개

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014818505