메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제17권 제6호
발행연도
2007.12
수록면
792 - 798 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 학습기법을 사용하지 않고 패턴분류의 성능을 최대화하면서 규칙의 수를 줄일 수 있는 통계적 정보기반 계층적 퍼지-러프 분류방법을 제안한다. 제안된 방법에서 통계적 정보는 계층적 퍼지-러프 분류 시스템에서 각 계층의 입력부 퍼지집합의 분할 구간을 추출하기 위해서 사용되었고, 러프집합은 통계적 정보로부터 추출된 분할 구간들과 연관된 퍼지 if-then 규칙의 수를 최소화하기 위해서 사용되었다. 제안된 방법의 효과성을 보이기 위해 Fisher의 IRIS 데이터를 사용한 기존 패턴분류 방법의 분류 정확도와 규칙들의 수를 비교하였다. 그 결과, 제안된 방법은 기존 방법들의 분류 성능과 유사함을 확인할 수 있었다.

목차

요약
Abstract
1. 서론
2. 계층적 퍼지-러프 분류기법
3. 실험결과 및 검토
5. 결론
참고문헌
저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015034827