메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
Arc welding process is one of the most important technologies to join metal plates. Robotic welding offers the reduced manufacturing cost sought, but its widespread use demands a means of sensing and correcting for inaccuracies in the part, the fixturing, and the robot. A number of problems that need to be addressed in robotic arc welding processes include sensing, joint tracking, and lack of adequate mathematical models for parameter prediction and quality control. Problems with parameter settings and quality control occur frequently in the GMA(Gas Metal Arc) welding process because of the large number of interactive parameters that must be set and accurately controlled. The objectives of this paper are to realize the mapping characteristics of bead width using a sensitivity analysis and develop the neural network and multiple regression method, and finally select the most accurate model in order to control the weld quality(bead width) for fillet welding. The experimental results show that the proposed neural network estimator can predict bead width with reasonable accuracy, and guarantee the uniform weld quality.

목차

Abstract
1. 서론
2. 필릿용접 실험
3. 수학적 모델 개발
4. 비드 폭에 대한 용접인자들의 민감도 분석
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-552-014791295