메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
지문분류는 지문을 전역특징에 따라 미리 정의된 클래스로 분류하여 대규모 지문식별시스템의 매칭시간을 감소시키는데 유용하다. 그런데, 지문의 고유성으로 인해 전역특징이 다양하게 분포함에도 불구하고, 기존의 지문분류 방법들은 모든 지문에 대해 고정된 영역으로부터 비적응적으로 전역특징을 추출하였다. 본 논문에서는 다양한 지문을 효과적으로 분류하기 위해 각 지문에 적응적으로 특징을 추출하는 방법을 제안한다. 이는 각 지문의 융선 방향의 변화량을 계산하여 적응적으로 특징영역을 탐색한 후, 특징영역내의 융선 방향 값을 특징벡터로 추출하고 지지벡터기계(Support Vector Machines)를 이용해 분류한다. 본 논문에서는 NIST4 데이타베이스를 이용하여 실험을 수행하였다. 그 결과 5클래스 분류에 대해 90.3%, 4클래스 분류에 대해 93.7%의 분류성능을 얻었으며, 비적응적으로 추출한 특징벡터와의 비교실험을 통해 제안하는 적응적 특징추출방법의 유용성을 입증하였다.

목차

요약
Abstract
1. 서론
2. 배경연구
3. 적응적 특징추출
4. 실험 및 결과
5. 결론
참고문헌

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016251208