메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국생산제조학회 한국생산제조학회지 한국공작기계학회 논문집 Vol.14 No.6
발행연도
2005.12
수록면
16 - 21 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The cutting characteristics of hardened steel(AISI 52100) by PCBN tools is investigated with respect to cutting force, workpiece surface roughness and tool flank wear by the vision system. Hard turning is carried out with various cutting conditions; spindle rotational speed, depth of cut and feed rate. Backpropagation neural networks(BPNs) are used for detection of tool wear. The input vectors of neural network comprise of spindle rotational speed, feed rates, vision flank wear, and thrust force signals. The output is the tool wear state which is either usable or failure. The detection of the abnormal states using BPNs achieves 96.8% reliability even when the spindle rotational speed and feedrate are changed.

목차

Abstract
1. 서론
2. 실험장치 및 방법
3. 실험결과 및 고찰
4. 결론
참고문헌

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-552-016147411