메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 스테레오 카메라를 이용한 이동 카메라 환경에서Mean Shift와 깊이지도를 결합하여 다수의 사람을 다양한 자세, 크기, 조명변화에 강인한 추적을 하는 방법을 제안한다. Mean Shift 추적 알고리즘은 빠르고 안정적인 성능으로 실시간 추적에 적합하다. 그러나 객체의 칼라 정보만으로는 배경과 칼라 분포가 유사한 객체의 경우 추적에 실패할 수 있는 단점을 보완하기 위하여 깊이 정보를 결합하는 방법을 제안한다. 또한 객체가 이동하면서 발생하는 가려짐 문제를 해결하기 위하여 검출된 사람 영역을 머리, 몸통, 다리로 나누어 신체 부위별 모델링을 하였고 박스 크기가 객체의 크기변화에 따라 적응적으로 변하도록 하였다. 본 논문에서 제안하는 알고리즘은 다양한 데이타에 대해서 실험한 결과 정확한 검출과 추적에 우수한 성능을 확인 할 수 있었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안하는 추적 알고리즘
4. 실험 결과 및 평가
5. 결론
참고문헌

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016041484