메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 다중 클래스 SVM을 이용하여 손 형태를 효과적으로 인식할 수 있는 방법을 제시한다. 컴퓨터의 상호작용 연구가 활발해짐에 따라 컴퓨터가 인간의 행동을 얼마나 정확히 인식할 수 있느냐에 대한 연구는 끊임없이 이루어지고 있다. 본 연구에서는 실시간으로 입력되는 손 영상에 대하여 색상(Hue)과 채도(Saturation)를 이용한 컬러모델을 기반으로 조명의 영향을 줄이며 손의 영역을 추출하고, 특히, 팔영역을 포함한 손영역이 촬영된 영상에서 손목 이후 부분을 제외한 손 영역만을 추출하도록 하였다. 손 형태를 인식하기 위하여 손 영역으로부터 손의 특징을 18 개의 특징값으로 표현하였고, 이를 통해 학습된 다중 클래스 SVM을 이용하여 손 형태를 인식하였다.

목차

요약
1. 서론
2. 손 영역 추출
3. 손 형태의 특징 정의
4. SVM 기반 손형태 학습 및 인식
5. 실험 및 결과
6. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015986459