메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-SC 電子工學會論文誌 第44卷 SC編 第5號
발행연도
2007.9
수록면
45 - 54 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
시/주파수 분석은 생체 신호 처리에서 널리 사용되어왔다. 전기 생리학적 신호로부터 중요한 특징들을 추출함으로써 이 방법들은 특정 질병의 임상 병리학적 기전 해석이 가능하다. 하지만 이 방법은 신호가 안정하다는 가정 아래 적용되었으며 불안정한 시스템에서의 적용은 제한이 되어 있다. 본 연구에서는 비선형적이고 비정상적인 심실세동 심전도 파형의 분석을 위해 Hilbert-Huang 변환을 사용한 새로운 신호처리 방법을 제안하였다. Hilbert-Huang 변환은 경험모드분리법(EMD)과 힐버트 변환으로 크게 두 가지로 구성된다. Hilbert-Huang 변환은 EMD를 사용하여 각각의 특성을 지니고 있는 독립적인 내부모드함수들로 나누어지며, 힐버트 변환에 의해 순간 주파수와 크기를 구할 수 있게 된다. 이런 특성으로 신호의 국부적인 작용에 대하여 정확하게 설명할 수 있게 된다. 본 연구에서는 Hilbert-Huang 변환을 기반으로 심실세동 심전도 파형으로부터 두 종류의 파라미터(EMD-IF, EMD-FFT)를 추출하고 서포트 벡터 머신(Support Vector Machine)을 이용하여 소생성공 및 실패 여부 예측에 관하여 연구하였다. 평균적으로 민감도와 특이도는 각각 87.57%와 76.92%로 나타났다. Hilbert-Huang 변환은 더욱 정확하게 심실세동에서의 소생성공 예측을 가능하게 하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결과 및 고찰
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017087911