메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
양시동 (인하대학교) 최원익 (인하대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.41 No.10
발행연도
2014.10
수록면
792 - 798 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
R tree는 공간 데이터베이스 분야에서 가장 널리 쓰이는 색인 구조이며 다양한 변형된 기법들이 제안되었다. 이 기법들 중 Hilbert R tree는 공간 채움 곡선인 Hilbert 곡선을 이용해서 대용량의 데이터를 고비용의 분할 과정 없이 R tree를 구성하는 기법이다. 하지만 기존의 CPU기반의 Hilbert R tree는 대용량의 데이터를 처리할 때는 순차적인 접근으로 발생되는 고비용의 전처리 비용과 느린 구축시간으로 실제 응용에 적용되기에는 한계가 있다. 본 논문에서는 이러한 문제를 해결하기 위해 GPU를 이용해서 데이터의 Hilbert 매핑을 병렬화 하고 이를 통해서 최종적으로 GPU의 메모리에 Hilbert R tree의 벌크로딩을 고속화하는 기법을 제안한다. GPU기반의 Hilbert R tree는 inversed cell 기법과 트리구조 패킹의 병렬화 기법을 통해서 벌크로딩의 성능을 향상시켰다. 실험 결과에서는 기존의 CPU 기반의 벌크로딩에 비해 최대 45배의 성능향상을 보여주었다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 제안기법
4. 성능 평가
5. 결론
References

참고문헌 (18)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-002734421