메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 이미지 상에 나타난 색상 정보를 추출하기 위한 새로운 커널 메소드(Kernel method)인 Grid kernel을 제안한다. 제안한 Grid kernel은 Convolution kernel의 하나로 이미지 상에 나타나는 자질을 주변 픽셀에서 나타나는 자질로 정의 하고 이를 재귀적으로 적용함으로써 두 이미지를 비교한다. 본 논문에서는 제안한 커널을 차량 색상 인식 문제에 적용하여 차량 색상 인식 모델을 제안한다. 이미지 생성시 나타나는 주변 요인으로 인해 차량의 색상을 추출하는 것은 어려운 문제이다. 이미지가 야외에서 촬영되기 때문에 시간, 날씨 등의 주변 요인은 같은 차량이라 하더라도 다른 색상을 보이게 할 수 있다. 이를 해결하기 위해 Grid kernel이 적용된 차량 색상 인식 모델은 이미지를 HSV (Hue-Saturation-Value) 색상 공간으로 사상하여 명도를 배제하였다. 제안한 커널과 색상 인식 모델을 검증하기 위해 5가지 색상을 가진 차량 이미지를 이용하여 실험을 하였으며, 실험 결과 92.4%의 정확율과 92.0%의 재현율을 보였다.

목차

요약
1. 서론
2. Grid Kernel(GK)
3. 색상 인식 모델
4. 실험
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016827871