메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
MLP(Multi-Layer Perceptron)를 이용한 학습은 간단한 구조에도 비선형 분류가 가능하다는 장점을 가지고 있다. 하지만 오류역전파 알고리즘을 사용함으로써 시간의 소모가 크고 원치 않는 결과값으로의 수렴가능성을 배제할 수 없다는 단점을 가지고 있다. 이는 초기설정의 의존도가 높기 때문에 발생하는 문제들로 좋은 결과값에 근접한 곳으로 초기화가 이루어지면 좋은 학습 성능을 보이지만 반대로 좋은 결과값으로부터 멀리 떨어진 곳으로 신경망의 초기화가 이루어지면 학습 성능이 현저히 낮아지는 현상을 보인다. 본 논문에서는 MLP 전체의 층을 대상으로 하는 본 학습이 이루어지기 전에 RBM(Restricted Boltzmann Machine)을 이용, 층간 선행학습을 행하고 그 결과로 얻어지는 가중치와 바이어스를 본 MLP 학습의 초기화 데이터로 사용하는 개선 MLP 학습 알고리즘을 제안한다. 이 방법을 사용함으로써 MLP 학습 속도향상은 물론 원치 않는 지역해로의 수렴까지 방지할 수 있어 전체적인 학습 성능향상이 가능하게 된다.

목차

요약
1. 서론
2. RBM(Restricted Boltzmann Machine)
3. RBM을 이용한 개선 MLP 학습 알고리즘
4. 실험환경 및 결과
5. 결론 및 향후과제
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016768891