메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
Korean Society for Precision Engineering 한국정밀공학회 학술발표대회 논문집 한국정밀공학회 2005년도 추계학술대회 논문요약집
발행연도
2005.10
수록면
449 - 452 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The wide spread of internet business recently necessitates recommendation systems which can recommend the most suitable product for customer demands. Currently the recommendation systems use content-based filtering and/or collaborative filtering methods, which are unable both to explain the reason for the recommendation and to reflect constantly changing requirements of the users. These methods guarantee good efficiency only if there is a lot of information about users.
This paper proposes an algorithm called ‘demand articulate & integration’ which can perceive user’s continuously varying intents and recommend proper contents. A method of knowledge classification which can be applicable to this algorithm is also developed in order to disassemble knowledge into basic units and articulate indices. The algorithm provides recommendation outputs that are close to expert’s opinion through the tracing of articulate index.
As a case study, a knowledge base for heritage information is constructed with the expert guide’s knowledge. An intelligent recommendation system that can guide heritage tour as good as the expert guider is developed.

목차

ABSTRACT
1. 서론
2. 관련연구
3. 지식 분류, 연결 및 통합 방법
4. 지능형 추천 시스템
5. 결론
후기
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-555-016725667