메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이세일 (공주대학교) 이상용 (공주대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제20권 제2호
발행연도
2010.4
수록면
189 - 194 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
사용자들의 추천 서비스를 위해 다른 사용자들의 평가값을 이용하여 특정 사용자에게 서비스를 추천해 주는 추천 시스템은 협력적 필터링 방법을 널리 사용되고 있다. 하지만 이러한 추천시스템은 클러스터링 과정에서 이미 분류된 그룹에 특정 사용자가 분류되어 정확히 분류되지 못하고, 사용자들의 평가값 오차가 클 경우 정확하지 못한 결과를 추천할 수 있다.
본 논문에서는 예측 정확도를 높이기 위하여 특정 사용자의 분류 항목을 기준으로 재분류하고, 시간적으로 임계치를 넘어선 사용자의 평가값을 찾아내어 보정한 후 협력적 필터링에 적용한 추천 시스템을 제안하였다. 본 시스템에서는 클러스터링 과정에서 이미 분류된 그룹에 특정 사용자를 분류하는 것이 아니라, 특정 사용자를 기준으로 그룹을 재편성하는 방법을 사용하였다. 또한 평가 정보를 표본 절사평균에서 하위 10%를 절사하여 평가 정보들을 보정하고, 나머지 자료들은 시간에 따른 가중치를 적용하였다. 실험 결과 제안한 방법은 일반적인 협력적 필터링보다 MAE를 사용할 경우 예측 정확도가 14.9% 정도 우수함을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 시간적 변화를 고려한 서비스 추천 시스템
4. 실험 및 평가
5. 결론
참고문헌
저자소개

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-028-003264674