메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한국토·도시계획학회 국토계획 國土計劃 第36卷 第2號
발행연도
2001.4
수록면
129 - 137 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this study is to forecast the housing price using the internet based Real Estate Bond Exchange system[REBE] as the Experimental Urban Planning prototype. REBE is a internet-based simulation environment for getting the information of urban planning such as real estate bond exchange market, which allows multilateral matching of buying or selling order like stock exchange or double auction market. REBE consisted of the four sub-system; the Market Environment Sub-system, the Stock Item Information Sub-system, the Ordering Sub-system, and the Matching Sub-system. Internet technologies such as Protocol, PHP3, JavaScript, and SQL were used to design and implement REBE. Closed continuous call trading experiment was done to forecast the price of the 8th housing item from April to June. The accuracy of forecasting housing price result in 100.45, which is over estimates. The range of forecasting accuracy is form 98.45 to 103.45. Statistically the forecasting accuracy of REBE system is 99.9% on the confidential level 99%, which dependent variable is real trading price and independent variable is experimental or forecasting price. It is necessary to locate investigating robot on the REBE system for encouraging experimenter to get more decision making information. The REBE system for trading between groups will be needed to minimize biased information from amateur experimenter to have an effect on REBE system. It is necessary to attempt the various experimental management methods like the continuous or periodic call trading for enhancing the confidence of this system as a further study.

목차

Abstract
Ⅰ. 序論
Ⅱ. 實驗 模型: REBE SYSTEM
Ⅲ. 實驗
Ⅳ. 結論 및 向後 硏究方向
인용문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-539-017535203