메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.20 No.10
발행연도
2006.10
수록면
1,576 - 1,589 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Most of surface water ways in Egypt suffer from the infestation of aquatic weeds especially submerged ones which cause lots of problems for the open channels and the water structures such as increasing water losses, obstructing the water flow, and reducing the efficiency of the water structures. Accurate simulation of the water flow behavior in such channels is very essential for water distribution decision makers. Artificial Neural Network (ANN) has been widely utilized in the past ten years in civil engineering applications for the simulation and prediction of the different physical phenomena and has proven its capabilities in the different fields. The present study aims towards introducing the use of ANN technique to model and predict the impact of the existence of submerged aquatic weeds on the hydraulic performance of open channels. Specifically the current paper investigates utilizing the ANN technique in developing a simulation and prediction model for the flow behavior in an open channel experiment that simulates the existence of submerged weeds as branched flexible elements. This experiment was considered as an example for implementing the same methodology and technique in a real open channel system. The results of current manuscript showed that ANN technique was very successful in simulating the flow behavior of the pre-mentioned open channel experiment with the existence of the submerged weeds. In addition, the developed ANN models were capable of predicting the open channel flow behavior in all the submerged weeds' cases that were considered in the ANN development process.

목차

영어 초록
1. Introduction
2. Problem Description
3. Neural Network Structure
4. Neural Network Operation
5. Neural Network Training
6. Simulation Cases
7. Neural Network Design
8. Results and Discussion
9. Summary
10. Conclusion
References

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-017393444