메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
유전자 데이타의 클러스터링은 방대한 유전자 정보를 발현 정도에 따라 비슷한 그룹으로 나누어 분석하는 방법으로 유전자의 기능을 분석하는데 사용되어 왔다. 클러스터링의 한 종류인 퍼지 클러스터링은 하나의 샘플이 소속정도에 따라 여러 그룹에 동시에 소속되도록 나누는 방법으로, 하나의 유전자 데이타는 여러가지 유전 정보를 가질 수 있기 때문에 유전자 발현 데이타의 분석에 보다 적절한 방법이다. 그러나 보통 클러스터링 방법은 초기 값에 민감하고, 지역해에 빠질 수 있는 단점을 갖는다. 이런 단점을 해결하기 위해 본 논문에서는 진화 연산을 이용한 퍼지 클러스터링 방법을 제안한다. 이때, 적합도 평가를 위해서 모든 데이타에 대해 동일한 기준을 적용하는 베이지안 검증방법의 단점을 개선하여, 데이타의 특성을 고려하여 결정된 적응적 α-cut 기반 평가방법을 사용한다. SRBCT 데이타와 효모 세포주기 데이타를 이용해 실험을 하고 결과를 분석하여 제안하는 방법의 유용성을 확인하였다.

목차

요약
Abstract
1. 서론
2. 배경
3. 제안하는 방법
4. 실험 결과
5. 결론 및 향후 연구
참고문헌
저자소개

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017209131