메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
입력문장이 길어질수록 구문분석의 정확률은 크게 낮아진다. 따라서 긴 문장의 구문분석 정확률을 높이기 위해 장문분할 방법들이 많이 연구되었다. 중국어는 고립어로서 자연언어처리에 도움을 줄 수 있는 굴절이나 어미정보가 없는 대신 쉼표를 비교적 많이, 또 정확히 사용하고 있어서 이러한 쉼표사용이 장문분할에 도움을 줄 수 있다. 본 논문에서는 중국어 문장에서 쉼표 주변의 문맥을 파악하여 해당 쉼표위치에 문장분할이 가능한지 Support Vector Machine을 이용해 판단하고자 한다. 쉼표의 분류의 정확률이 87.1%에 이르고, 이 분할모델을 적용한 후 구문분석한 결과, 의존트리의 정확률이 5.6% 증가했다.

목차

요약
Abstract
1. 서론
2. 기존연구
3. 구문분석을 위한 쉼표의 분류
4. 쉼표의 분류를 위한 자질 추출
5. 실험
6. 기존연구와의 비교 및 결론
참고문헌
저자소개

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015617711