메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한설비공학회 설비공학논문집 공기조화·냉동공학 논문집 제12권 제7호
발행연도
2000.7
수록면
688 - 696 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A scheme for fault detection on the subsystem level is presented. The method uses analytical redundancy and consists in generating residuals by comparing each measurement with an estimate computed from the reference models. In this study regression neural network models are used as reference models. The regression neural network is memory-based feed forward network that provides estimates of continuous variables. The simulation result demonstrated that the proposed method can effectively detect faults in an air handling unit(AHU). The results show that the regression models are accurate and reliable estimators of the highly nonlinear and complex AHU.

목차

ABSTRACT

1. 서론

2. 본론

3. 결론

후기

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-553-001515109