메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한건축학회 대한건축학회 논문집 - 계획계 대한건축학회논문집 - 계획계 제21권 제9호
발행연도
2005.9
수록면
167 - 174 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this study is to explain the psychological analysis about the container port landscape, to make the attractive ocean space. An Ocean space is the very important factor not only to represent urbanity and civic culture, and representative urbanscape but also to estimate environmental quality. However, nowadays, coastal landscape is being changed and destructed by the large scale development in container port area. And there is rare research on port and hinterland landscape and no guideline for port landscape planning and management.
This research project is to provide those planners with the landscape management measures for the port and hinterland. To do so, fist of all, the evaluation of examinees' psychological structures to explicate spatial consciousness of the port landscape is attempted by semantic differential method using 18 photo images of Oakland, Hongkong, Osaka, Kobe, Inchon, and Busan port. And then, Factor Analysis, Frequencies, and ANOVA were applied to examine the port landscape examples.
Finally, psychological evaluation construction about the port landscape is made on the bases of psychological factors of human. As a result, psychological evaluation factors defining the characteristics of port landscape can be explained by 5 factors; amenity, artificiality, vigorousness, identity and open view.
As a result of ANOVA, many difference is represented in psychological characteristics which a amenity, vigorousness, and open view. We expect this research to be used as a valuable data in evaluation and planning of portscape.

목차

Abstract

1. 서 론

2. 예비실험 및 평가어휘의 선정

3. 항만경관에 대한 심리적 의미구조의 분석

4. 분산분석에 의한 각 심리요인별 차이 검증

5. 결 론

참고문헌

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-540-018052846