메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 인터넷의 급속한 성장과 더불어 전자메일(E-Mail)은 의사교환의 필수적인 매체로 사용 되어지고 있다. 그러나 편리하고 비용이 들지 않는 장점을 이용해 엄청난 양의 스팸 메일이 매일같이 쏟아져 오고, 이를 해결하기 위한 다양한 연구들이 제시되어져 왔다. 특히, 문서 분류에 널리 쓰이는 베이지안 분류자(Bayesian classifier)가 가장 널리 이용되어지고 있는데, 정확도와 재현율에서 비교적 우수한 성능을 보이고 있다. 그러나 몇 가지 문제점을 갖고 있는데, 첫째, 사전에 사용자에 의해 스팸, 논스팸 메일에 대한 충분한 학습이 선행되어야 하는 점, 둘째, 필터 ... 전체 초록 보기

목차

요약

1. 서론

2. 스팸 메일 필터링 성능 향상을 위한 방법론들

3. 온톨로지와 Semantic Enrichment를 사용한 스팸 메일 필터링 성능 향상 기법

4. 실험 및 결과

5. 결론 및 향후 연구

[참고문헌]

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017997465